First Synthesis of Magnesacyclopentadienes from Acetylenes by Treatment with BuMgHIg in the Presence of Zr Complexes

U. M. Dzhemilev, A. G. Ibragimov, V.A. D'yakonov, and R. A. Zinnurova
Institute of Petrochemistry and Catalysis, Russian Academy of Sciences, Ufa, 450075 Russia e-mail: ink@anrb.ru

Received January 18, 2006

Abstract

Treatment of internal acetylenes and allenes with $\mathrm{BuMgHlg}(\mathrm{Hlg}=\mathrm{Cl}, \mathrm{Br})$ in the presence of $\mathrm{Cp}_{2} \mathrm{ZrCl}_{2}$ selectively leads to the formation of substituted magnesacyclopenta-2,4-dienes and alkylidenemagnesacyclopentenes.

DOI: 10.1134/S1070428007020030

First publication on the direct catalytic preparation of a magnesacyclopentanes from olefins using Grignard reagents or $\mathrm{R}_{2} \mathrm{Mg}$ appeared in 1989 [1]. Later this reaction was extended to allenes that in the presence of Ti-containing catalysts gave rise to 2,5-dialkylidenemagnesacyclopentanes in high yields [2]. Until our studies no information was published on the possibility to involve acetylenes into this process.

The target of this study consists in the synthesis of a new class of organomagnesium compounds, magnesacyclopentadienes, by reaction of internal acetylenes with Grignard reagents in the presence of catalysts containing
zirconium complexes which are the most active and selective in cyclometallation of unsaturated compounds [3, 4]. As objects of the study were chosen internal acetylenes and available alkylmagnesium halides.

The reaction of 4 -octyne with $\mathrm{BuMgBr}\left(\mathrm{Et}_{2} \mathrm{O}\right)$ in molar ratio $1: 2$ catalyzed by $\mathrm{Cp}_{2} \mathrm{ZrCl}_{2}$ ($10 \mathrm{~mol} \%$) gave rise at $\sim 20^{\circ} \mathrm{C}$ within 2 h to $2,3,4,5$-tetrapropylmagnesacyclopentadiene (Ib) in $\sim 50 \%$ yield. The structure and composition of magnesacyclopentadiene Ib were established from the ${ }^{13} \mathrm{C}$ NMR spectra and from analysis of products of hydrolysis IIIb and of reaction with deuterium oxide $\mathbf{I V b}$ (Scheme 1).

Scheme 2.

${ }^{13} \mathrm{C}$ NMR spectrum of compound Ib contains a downfield signal at 191.10 ppm that we assumed to belong to $s p^{2}$-carbon atom ($\mathrm{C}^{2}-\mathrm{Mg}$) of magnesacyclopentadiene ring. This conclusion was based on previously published data [5] that in the ${ }^{13} \mathrm{C}$ NMR spectrum of a mixture containing 2,5-dihexylidenemagnesacyclopentane and unsaturated acyclic 1,4-dimagnesium compound existing in a Schlenk equilibrium appeared signals at 188.30 and 166.36 ppm belonging respectively to the $s p^{2}$-carbon atoms $(\mathrm{C}-\mathrm{Mg})$ in the cyclic and the acyclic compounds respectively. Therefore the presence in the ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{I b}$ of the signal at 190.16 ppm and no signal in the region $\sim 166 \mathrm{ppm}$ may indicate that for the nixture of compounds Ib and IIb the Schlenk equilibrium is shifted to magnesacyclopentadiene Ib. To prove this assumption we added to a mixture of compounds Ib and IIb 1,4-dioxane which formed with magnesium dihalide insoluble in ether complex [6] thus shifting the Schlenk equilibrium to the cyclic compound Ib [7]. On removing by centrifugation insoluble in ether magnesium dihalide dioxanate ($\mathrm{MgBr}_{2} \cdot 2 \mathrm{dio}$) the ${ }^{13} \mathrm{C} \mathrm{NMR}$ spectrum of compound $\mathbf{I b}$ contained only the downfield signal of the carbon atom $\left(\mathrm{C}^{2}-\mathrm{Mg}\right)$ at 190.22 ppm ; it also supported the cyclic structure of compound Ib obtained in $\mathrm{Et}_{2} \mathrm{O}$. The replacement of the initial BuMgBr by BuMgCl did not significantly influence the yield of the target product, but in reaction carried out in THF the yield of compound $\mathbf{I b}$ did not exceed 15%.

Under the developed conditions $\left(\sim 20^{\circ} \mathrm{C}, 2 \mathrm{~h}, 10 \mathrm{~mol} \%\right.$ of $\mathrm{Cp}_{2} \mathrm{ZrCl}_{2}, \mathrm{Et}_{2} \mathrm{O}$) reactions of 3-hexyne, 5-decyne, and 1-hexynyltrimethylsilane with excess BuMgHlg ($\mathrm{Hlg}=$ Cl, Br) led to the formation of the corresponding magnesacyclopentadienes Ia, Ic, and Id in 45-50\% yields.

We believe that the formation of the cyclic structure I originates from Zr -containing cyclic intermediates arising under the reaction conditions in keeping with the scheme assumed for the formation of magnesacycles from α-olefins [8] and α, ω-diolefins [9].

We tried further to carry out intermolecular reaction of acetylene and allene in equimolar amounts with $\mathrm{BuMgHlg}(\mathrm{Hlg}=\mathrm{Cl}, \mathrm{Br})$ in the presence of catalyst $\mathrm{Cp}_{2} \mathrm{ZrCl}_{2}$ in order to obtain alkylidenemagnesacyclopentenes whose stucture contained potentially richer synthetic opportunities than that of magnesacyclopentadienes. Actually, the reaction of a mixture of 3hexyne and 1,2 -octadiene with excess BuMgBr (acetyl-ene-allene- $\mathrm{BuMgBr}, 1: 1: 2$) in $\mathrm{Et}_{2} \mathrm{O}$ in the presence of $10 \mathrm{~mol} \% \mathrm{Cp}_{2} \mathrm{ZrCl}_{2}$ within 2 h led to the formation of 2,3-diethyl-5-hexylidenemagnesacyclopent-2-ene (Va) in $\sim 45 \%$ yield (Scheme 2). In minor quantity (up to 10%) formed 2,3,4,5-tetraethylmagnesacyclopentadiene (Ia).

Under the above conditions 4-octyne and 1,2-octadiene or 4-octyne and 1-(1,2-propadienyl)benzene reacted with excess $\mathrm{BuMgHlg}(\mathrm{Hlg}=\mathrm{Cl}, \mathrm{Br})$ giving the corresponding alkyl(benzyl)idenemagnesacyclopentanes $\mathbf{V b}$ and $\mathbf{V c}$ in $45-50 \%$ yield. Alongside the latter minor amounts of the corresponding 2,3,4,5-substituted magnesacyclopentadienes Ia and Ib were isolated from the reaction mixture in an yield not exceeding 15%.

Thus we first succeded to involve into the $\mathrm{Cp}_{2} \mathrm{ZrCl}_{2}-$ catalyzed reaction with $\mathrm{BuMgHlg}(\mathrm{Hlg}=\mathrm{Cl}, \mathrm{Br})$ acetylenes and their equimolar mixture with allenes and to obtain a new class of organomagnesium compounds: magnesacyclopentadienes and 2-alkylidenemagnesacyclopentenes possessing a wide synthetic potential, and also interesting as new cocatalysts in the Ziegler-Natta systems and
promising organomagnesium reagents in organic and organometallic syntheses.

EXPERIMENTAL

Products of hydrolysis and of reaction with deuterium oxide were analyzed on a chromatograph Chrom-5 in a helium flow, column $1200 \times 3 \mathrm{~mm}$, stationary phase 5% SE- 30 or 15% PEG- 6000 on Chromaton N-AW. IR spectra were recorded on a spectrophotometer 75IR from films, mass spectra were obtained on MKh-1306 instrument at $200^{\circ} \mathrm{C}$, ionizing electrons energy 70 eV . ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were registered from solutions in CDCl_{3} on a spectrometer JEOL FX-90 Q [89.55 ($\left.{ }^{1} \mathrm{H}\right)$ and $\left.22.5 \mathrm{MHz}\left({ }^{13} \mathrm{C}\right)\right]$. The yields of organo-magnesium compounds were determined based on GLC analysis of their hydrolysis products. The reactions with organomagnesium compounds were carried out in a dry argon flow. Ethyl ether was distilled over LiAlH_{4} just before use. A solution of $\mathrm{BuMgHlg}(\mathrm{Hlg}=\mathrm{Cl}, \mathrm{Br})$ in $\mathrm{Et}_{2} \mathrm{O}$ was prepared by procedure from [10].

Acetylene reaction with $\mathrm{BuMgHlg}(\mathbf{H l g}=\mathbf{C l}, \mathrm{Br})$ catalyzed by $\mathbf{C p}_{\mathbf{2}} \mathbf{Z r C l}_{\mathbf{2}}$. Into a glass reactor under atmosphere of dry argon at $\sim 0^{\circ} \mathrm{C}$ was charged while stirring 1.0 mmol of $\mathrm{Cp}_{2} \mathrm{ZrCl}_{2}, 10 \mathrm{mmol}$ of acetylene, and 20 mmol of $\mathrm{BuMgHlg}(\mathrm{Hlg}=\mathrm{Cl}, \mathrm{Br})(2 \mathrm{M}$ solution in $\left.\mathrm{Et}_{2} \mathrm{O}\right)$. The temperature was raised to ambient $\left(20-22^{\circ} \mathrm{C}\right)$, and the mixture was stirred for 2 h . In order to identify the substituted magnesacyclopentadienes by the products of reaction with deuterium oxide the reaction mixture was treated with $8 \% \mathrm{DCl}$ in $\mathrm{D}_{2} \mathrm{O}$. The reaction products were extracted with ether or hexane, the extracts were dried over MgSO_{4}, the target products were isolated by fractional distillation. Compounds IVa-IVc were identified by comparison with authentic samples [11, 12].

2,3,4,5-Tetraethylmagnesacyclopenta-2,4-diene (Ia). a. Reaction in ether solution. ${ }^{13} \mathrm{C}$ NMR spectrum, ס, ppm: $13.38\left(\mathrm{C}^{14,17}\right), 14.16\left(\mathrm{C}^{8,11}\right), 20.87\left(\mathrm{C}^{13,16}\right), 22.76$ $\left(\mathrm{C}^{7}, 10\right), 31.29\left(\mathrm{C}^{12,15}\right), 32.04\left(\mathrm{C}^{6,9}\right), 132.75\left(\mathrm{C}^{3,4}\right), 190.16$ $\left(\mathrm{C}^{2,5}\right)$.
b. Reaction in 1,4-dioxane-ether mixture. ${ }^{13} \mathrm{C}$ NMR spectrum, δ, ppm: $13.41\left(\mathrm{C}^{14,17}\right), 14.55\left(\mathrm{C}^{8,11}\right), 21.00$ $\left(\mathrm{C}^{13,16}\right), 22.82\left(\mathrm{C}^{7,10}\right), 30.89\left(\mathrm{C}^{12,15}\right), 31.68\left(\mathrm{C}^{6,9}\right), 132.75$ $\left(\mathrm{C}^{3,4}\right), 190.22\left(\mathrm{C}^{2,5}\right)$.

2,3,4,5-Tetrapropylmagnesacyclopenta-2,4diene. a. Reaction in ether solution. ${ }^{13} \mathrm{C}$ NMR spectrum, δ, ppm: $14.13\left(\mathrm{C}^{11,13}\right), 14.26\left(\mathrm{C}^{7,9}\right), 31.29\left(\mathrm{C}^{10,12}\right), 32.07$ $\left(\mathrm{C}^{6,8}\right), 133.92\left(\mathrm{C}^{3,4}\right), 191.10\left(\mathrm{C}^{2,5}\right)$.
b. Reaction in 1,4-dioxane-ether mixture. ${ }^{13} \mathrm{C}$ NMR spectrum, δ, ppm: $14.23\left(\mathrm{C}^{11,13}\right), 14.88\left(\mathrm{C}^{7,9}\right), 31.84$ $\left(\mathrm{C}^{10,12}\right), 32.33\left(\mathrm{C}^{6,8}\right), 133.79\left(\mathrm{C}^{3,4}\right), 191.07\left(\mathrm{C}^{2,5}\right)$.

4,5-Diethylocta-3,5-diene (IIIa), bp $89-91{ }^{\circ} \mathrm{C}$ (15 mm Hg .). IR spectrum, $v, \mathrm{~cm}^{-1}: 3080,2950,2900$, 2850, 1640, 1450, 1370, 910, 895, 720. ${ }^{1} \mathrm{H}$ NMR spectrum, δ, ppm: $0.82-1.05 \mathrm{~m}\left(12 \mathrm{H}, \mathrm{CH}_{3}\right), 2.06-2.25 \mathrm{~m}(8 \mathrm{H},=\mathrm{C}-$ $\left.\mathrm{CH}_{2}\right), 5.25-5.75(2 \mathrm{H},-\underline{\mathrm{HC}}=\mathrm{C}-) .{ }^{13} \mathrm{C}$ NMR spectrum, δ, ppm: 13.77, $14.55\left(\mathrm{C}^{1,8}\right), 20.93,21.23\left(\mathrm{C}^{2,7}\right), 126.50$ $\left(\mathrm{C}^{3,6}\right), 141.23\left(\mathrm{C}^{4,5}\right)$. Found, \%: C 86.27; H 13.06. $[M]^{+}$ 166. $\mathrm{C}_{12} \mathrm{H}_{22}$. Calculated, \%: С 86.67; H 13.33.

5,6-Dipropyldeca-4,6-diene (IIIb). bp $95-97^{\circ} \mathrm{C}$ $(1 \mathrm{~mm} \mathrm{Hg})$. IR spectrum, $v, \mathrm{~cm}^{-1}: 3000,2950,2850,1640$, 1420, 1380, 970, 810, 790, 720. ${ }^{1} \mathrm{H}$ NMR spectrum, δ, ppm: $0.85-1.23 \mathrm{~m}\left(12 \mathrm{H}, \mathrm{CH}_{3}\right), 1.33-1.75 \mathrm{~m}\left(8 \mathrm{H}, \mathrm{CH}_{2}\right)$, $1.96-2.35 \mathrm{~m}\left(8 \mathrm{H},=\mathrm{C}-\mathrm{CH}_{2}\right), 5.25-5.65(2 \mathrm{H}, \underline{\mathrm{HC}}=\mathrm{C})$. ${ }^{13} \mathrm{C}$ NMR spectrum, δ, ppm: 13.89, $14.61\left(\mathrm{C}^{1,10}\right), 22.03$, $23.27\left(\mathrm{C}^{2,9}\right), 30.04,30.30\left(\mathrm{C}^{3,8}\right), 126.10\left(\mathrm{C}^{4,7}\right), 141.41$ $\left(\mathrm{C}^{5,6}\right)$. Found, \%: C 86.07; H 13.16. [M] $222 . \mathrm{C}_{16} \mathrm{H}_{30}$. Calculated, \%: C 86.40; H 13.60.

6,7-Dibutyldodeca-5,7-diene (IIIc). bp $137-139^{\circ} \mathrm{C}$ $(1 \mathrm{~mm} \mathrm{Hg})$. IR spectrum, $v, \mathrm{~cm}^{-1}: 3000,2950,2900,2820$, 1640, 1450, 900, 730. ${ }^{1} \mathrm{H}$ NMR spectrum, δ, ppm: 0.86$1.12 \mathrm{~m}\left(12 \mathrm{H}, \mathrm{CH}_{3}\right), 1.23-1.79 \mathrm{~m}\left(16 \mathrm{H}, \mathrm{CH}_{2}\right), 1.98-$ $2.26 \mathrm{~m}\left(8 \mathrm{H},=\mathrm{C}-\mathrm{CH}_{2}\right), 5.25-5.85(2 \mathrm{H}, \underline{\mathrm{HC}}=\mathrm{C})$. ${ }^{13} \mathrm{C}$ NMR spectrum, δ, ppm: 13.76, 14.13 (C ${ }^{1,12)}$, 22.56, $22.97\left(\mathrm{C}^{2,11}\right), 27.83\left(\mathrm{C}^{3,10}\right), 28.05\left(\mathrm{C}^{4,9}\right), 31.13,31.29$, $125.86\left(\mathrm{C}^{5,8}\right), 141.27\left(\mathrm{C}^{6,7}\right)$. Found, \%: C 85.95; H 13.17. $[M]+278 . \mathrm{C}_{20} \mathrm{H}_{38}$. Calculated, \%: C 86.25; H 13.75.

2,3-Dibutyl-1,3-butadiene-1,4-diylbistrimethylenesilane (IIId). bp $108-110^{\circ} \mathrm{C}(1 \mathrm{~mm} \mathrm{Hg})$. IR spectrum, $v, \mathrm{~cm}^{-1}: 3080,2920,2850,2300,1640,1460,910$, 720. ${ }^{1} \mathrm{H}$ NMR spectrum, δ, ppm: $0.30-0.42[18 \mathrm{H}$, $\left.\mathrm{CSi}\left(\mathrm{CH}_{3}\right)_{3}\right], 0.85-0.95 \mathrm{~m}\left(6 \mathrm{H}, \mathrm{CH}_{3}\right), 1.1-1.5 \mathrm{~m}(8 \mathrm{H}$, $\left.\mathrm{CH}_{2}\right), 1.95-2.10 \mathrm{~m}\left(4 \mathrm{H},=\mathrm{C}-\mathrm{CH}_{2}\right), 5.52-5.83 \mathrm{~m}(2 \mathrm{H}$, $\mathrm{C}=\mathrm{C} \underline{\mathrm{H}}) .{ }^{13} \mathrm{C}$ NMR spectrum, δ, ppm: $0.28\left(\mathrm{C}^{13,14,15,16,17,18}\right)$, $14.15\left(\mathrm{C}^{7,11}\right), 23.21\left(\mathrm{C}^{6,10}\right), 31.82\left(\mathrm{C}^{5,9}\right), 33.93\left(\mathrm{C}^{4,8}\right)$, $125.32\left(\mathrm{C}^{2,3}\right), 161.08\left(\mathrm{C}^{1,12}\right)$. Found, \%: C 68.85; H 12.02. $[M]+310 . \mathrm{C}_{18} \mathrm{H}_{38} \mathrm{Si}_{2}$. Calculated, \%: C 69.14; H 11.61.

2,3-Dibutyl-1,4-dideutero-1,3-butadiene-1,4diylbistrimethylenesilane (IVd). bp $108-110^{\circ} \mathrm{C}$ (1 mm Hg). IR spectrum, $v, \mathrm{~cm}^{-1}: 2170(\mathrm{CD}) .{ }^{1} \mathrm{H}$ NMR spectrum, δ, ppm: $0.32-0.41\left[18 \mathrm{H}, \mathrm{CSi}\left(\mathrm{CH}_{3}\right)_{3}\right], 0.83-$ $0.96 \mathrm{~m}\left(6 \mathrm{H}, \mathrm{CH}_{3}\right), 1.11-1.53 \mathrm{~m}\left(8 \mathrm{H}, \mathrm{CH}_{2}\right), 1.96-2.15 \mathrm{~m}$ $\left(4 \mathrm{H},=\mathrm{C}-\mathrm{CH}_{2}\right) .{ }^{13} \mathrm{C}$ NMR spectrum, δ, ppm: $0.24\left(\mathrm{C}^{13,14,15,16,17,18}\right), 14.06\left(\mathrm{C}^{7,11}\right), 23.11\left(\mathrm{C}^{6,10}\right), 31.72$ $\left(\mathrm{C}^{5,9}\right), 33.86\left(\mathrm{C}^{4,8}\right), 125.60\left(\mathrm{C}^{2,3}\right), 160.72 \mathrm{t}\left(\mathrm{C}^{1,12}, J_{\mathrm{C}, \mathrm{D}}\right.$ $24.0 \mathrm{~Hz})$. Found, \%: C 68.85; (H+D) 12.02. [M] 312. $\mathrm{C}_{18} \mathrm{H}_{36} \mathrm{Si}_{2} \mathrm{D}_{2}$. Calculated, \%: C 69.14; H 11.61; D 1.29.

Reaction of a mixture of acetylenes and allenes with $\mathrm{BuMgHlg}(\mathbf{H l g}=\mathbf{C l}, \mathrm{Br})$ catalyzed by $\mathbf{C p}_{2} \mathbf{Z r C l}_{2}$. Into a glass reactor under atmosphere of dry argon at $\sim 0^{\circ} \mathrm{C}$ was charged while stirring 1.0 mmol of $\mathrm{Cp}_{2} \mathrm{ZrCl}_{2}, 10 \mathrm{mmol}$ of acetylene, 10 mmol of allene, and 20 mmol of $\mathrm{BuMgHlg}(\mathrm{Hlg}=\mathrm{Cl}, \mathrm{Br})(2 \mathrm{M}$ solution in $\left.\mathrm{Et}_{2} \mathrm{O}\right)$. The temperature was raised to ambient $\left(20-22^{\circ} \mathrm{C}\right)$, and the mixture was stirred for 2 h . In order to identify the substituted alkylidenemagnesacyclopentenes by the products of reaction with deuterium oxide the reaction mixture was treated with $8 \% \mathrm{DCl}$ in $\mathrm{D}_{2} \mathrm{O}$. The reaction products were extracted with ether or hexane, the extracts were dried over MgSO_{4}, the target products were isolated by fractional distillation.

4-Ethyl-3,6-dodecadiene (VIIa). bp $102-104^{\circ} \mathrm{C}$ (5 $\mathrm{mm} \mathrm{Hg})$. IR spectrum, $v, \mathrm{~cm}^{-1}: 3030,2900,2800,1650$, 1490, 1450, 1000, 910, 890, 720, 700. ${ }^{1}$ H NMR spectrum, , ppm: $0.87-0.93 \mathrm{~m}\left(9 \mathrm{H}, \mathrm{CH}_{3}\right), 1.1-1.58 \mathrm{~m}\left(6 \mathrm{H}, \mathrm{CH}_{2}\right)$, $1.95-2.69 \mathrm{~m}\left(8 \mathrm{H},=\mathrm{C}-\mathrm{CH}_{2}\right), 5.45-5.82 \mathrm{~m}(3 \mathrm{H}, \mathrm{C}=\mathrm{CH})$. ${ }^{13} \mathrm{C}$ NMR spectrum, δ, ppm: $13.38,14.02\left(\mathrm{C}^{12}\right), 14.65$ $\left(\mathrm{C}^{l}\right), 20.19\left(\mathrm{C}^{2}\right), 22.85\left(\mathrm{C}^{1 l}\right), 23.78,27.21\left(\mathrm{C}^{8}\right), 29.69$ $\left(\mathrm{C}^{9}\right), 30.29\left(\mathrm{C}^{10}\right), 36.34\left(\mathrm{C}^{5}\right), 125.68\left(\mathrm{C}^{3}\right), 128.15\left(\mathrm{C}^{6}\right)$, $130.89\left(\mathrm{C}^{7}\right), 131.77\left(\mathrm{C}^{4}\right) .[M]^{+}$194. Found, \%: C 86.03; H 12.99. $\mathrm{C}_{14} \mathrm{H}_{26}$. В ̂̂ $\times \theta \mathrm{C} \lambda \varepsilon-v \mathrm{O}, \%$: C 86.52; H 13.48.

5-Propyl-4,7-tridecadiene (VIIb). bp 98-100 ${ }^{\circ} \mathrm{C}(1$ $\mathrm{mm} \mathrm{Hg})$. IR spectrum, $v, \mathrm{~cm}^{-1}: 3035,2950,2860,1640$, 1470, 1450, 1390, 1000, 910, 890, 730. ${ }^{1}$ H NMR spectrum, δ, ppm: $0.90-1.15 \mathrm{~m}\left(9 \mathrm{H}, \mathrm{CH}_{3}\right), 1.21-1.59 \mathrm{~m}\left(10 \mathrm{H}, \mathrm{CH}_{2}\right)$, $1.95-2.70 \mathrm{~m}\left(8 \mathrm{H},=\mathrm{C}-\mathrm{CH}_{2}\right), 5.55-5.85 \mathrm{~m}(3 \mathrm{H}, \mathrm{C}=\mathrm{CH})$. ${ }^{13} \mathrm{C}$ NMR spectrum, δ, ppm : $13.86,14.05\left(\mathrm{C}^{13}\right), 14.59$ $\left(\mathrm{C}^{1}\right), 22.08,22.89\left(\mathrm{C}^{12}\right), 23.31\left(\mathrm{C}^{2}\right), 27.35\left(\mathrm{C}^{9}\right), 29.76$ $\left(\mathrm{C}^{10}\right), 30.15,30.28\left(\mathrm{C}^{11}\right), 30.46\left(\mathrm{C}^{3}\right), 37.15\left(\mathrm{C}^{6}\right), 126.18$ $\left(\mathrm{C}^{4}\right), 129.15\left(\mathrm{C}^{7}\right), 130.65\left(\mathrm{C}^{8}\right), 131.18\left(\mathrm{C}^{5}\right) .[M]^{+} 222$. Found, \% : C 85.92; H 13.12. $\mathrm{C}_{16} \mathrm{H}_{30}$. Calculated, \% : C 86.40; H 13.60.

4-Propyl-1-phenyl-1,4-octadiene (VIIc). bp 128$130^{\circ} \mathrm{C}(1 \mathrm{~mm} \mathrm{Hg})$. IR spectrum, $v, \mathrm{~cm}^{-1}: 3030,2940$, $2860,1650,1490,1450,1395,1050,920,870,720 .{ }^{1} \mathrm{H}$ NMR spectrum, δ, ppm: $0.89-1.13 \mathrm{~m}\left(6 \mathrm{H}, \mathrm{CH}_{3}\right), 1.25-$ $1.68 \mathrm{~m}\left(4 \mathrm{H}, \mathrm{CH}_{2}\right), 1.95-2.29 \mathrm{~m}\left(4 \mathrm{H},=\mathrm{C}-\mathrm{CH}_{2}\right), 2.55-$ $3.15\left(2 \mathrm{H},=\mathrm{C}-\mathrm{CH}_{2}-\mathrm{C}=\right), 5.45-6.82 \mathrm{~m}(3 \mathrm{H}$, $\left.\mathrm{C} \underline{\mathrm{H}}=\mathrm{CCH}_{2} \underline{\mathrm{H} C}=\mathrm{C} \underline{\mathrm{HPh}}\right), 7.23-7.65(5 \mathrm{H}, \mathrm{Ph}) .{ }^{13} \mathrm{C}$ NMR spectrum, δ, ppm: 13.83, 14.03 (C^{8}), 23.11, $25.55\left(\mathrm{C}^{7}\right)$, 32.84 (C6), 35.68, 38.80 (C^{3}), 125.84 (C5), 126.59, 127.47, 129.52, $129.98\left(\mathrm{C}^{2}\right), 130.92\left(\mathrm{C}^{1}\right), 136.84,137.96\left(\mathrm{C}^{4}\right)$. $[M]+228$. Found, \%: C 89.11; H 10.02. $\mathrm{C}_{17} \mathrm{H}_{24}$. Calculated, \%: C 89.41; H 10.59.

3,6-Dideutero-4-ethyl-3,6-dodecadiene (VIIIa). bp $102-104^{\circ} \mathrm{C}(5 \mathrm{~mm} \mathrm{Hg})$. IR spectrum, $v, \mathrm{~cm}^{-1}: 2160$
(CD). ${ }^{1} \mathrm{H}$ NMR spectrum, δ, ppm: $0.88-0.91 \mathrm{~m}(9 \mathrm{H}$, $\left.\mathrm{CH}_{3}\right), 1.12-1.68 \mathrm{~m}\left(6 \mathrm{H}, \mathrm{CH}_{2}\right), 1.89-2.47 \mathrm{~m}(8 \mathrm{H},=\mathrm{C}-$ $\left.\mathrm{CH}_{2}\right), 5.38-5.79 \mathrm{~m}(1 \mathrm{H}, \mathrm{C}=\mathrm{C} \underline{\mathrm{H}}) .{ }^{13} \mathrm{C}$ NMR spectrum, δ, ppm: 13.35, $14.05\left(\mathrm{C}^{12}\right), 14.72\left(\mathrm{C}^{1}\right), 20.26\left(\mathrm{C}^{2}\right), 22.78$ $\left(\mathrm{C}^{11}\right), 23.56,27.32\left(\mathrm{C}^{8}\right), 29.74\left(\mathrm{C}^{9}\right), 30.41\left(\mathrm{C}^{10}\right), 36.54$ $\left(\mathrm{C}^{5}\right),{ }^{*}\left(\mathrm{C}^{3}\right),{ }^{*}\left(\mathrm{C}^{6}\right), 130.73\left(\mathrm{C}^{7}\right), 132.87\left(\mathrm{C}^{4}\right) .[M]^{+} 196$. Found, \%: C 85.31; (H+D) 14.02. $\mathrm{C}_{14} \mathrm{H}_{24} \mathrm{D}_{2}$. Calculated, \%: C 85.63; H 12.32; D 2.05.

4,7-Dideutero-5-propyl-4,7-tridecadiene (VIIIb). bp $98-100^{\circ} \mathrm{C}(1 \mathrm{~mm} \mathrm{Hg})$. IR spectrum, cm^{-1} : 2175 (CD). ${ }^{1} \mathrm{H}$ NMR spectrum, δ, ppm: $0.91-1.17 \mathrm{~m}\left(9 \mathrm{H}, \mathrm{CH}_{3}\right), 1.23-$ $1.61 \mathrm{~m}\left(10 \mathrm{H}, \mathrm{CH}_{2}\right), 1.95-2.72 \mathrm{~m}\left(8 \mathrm{H},=\mathrm{C}-\mathrm{CH}_{2}\right), 5.49-$ $5.78 \mathrm{t}(1 \mathrm{H}, \mathrm{C}=\mathrm{C} \underline{\mathrm{H}}) .{ }^{13} \mathrm{C}$ NMR spectrum, δ, ppm: 13.79, $14.01\left(\mathrm{C}^{13}\right), 14.46\left(\mathrm{C}^{1}\right), 22.12,22.84\left(\mathrm{C}^{12}\right), 23.29\left(\mathrm{C}^{2}\right)$, $27.31\left(\mathrm{C}^{9}\right), 29.64\left(\mathrm{C}^{10}\right), 30.09,30.31\left(\mathrm{C}^{11}\right), 30.52\left(\mathrm{C}^{3}\right)$, 37.23 (C6), *(C4), ${ }^{*}\left(\mathrm{C}^{7}\right), 130.38\left(\mathrm{C}^{8}\right), 131.28$ (C5). Found, \%: C 85.07; (H+D) 13.96. [M]+ 224. $\mathrm{C}_{16} \mathrm{H}_{28} \mathrm{D}_{2}$. Calculated, \%: C 85.63; H 12.58; D 1.79.

2,5-Dideutero-4-propyl-1-phenyl-1,4-octadiene (VIIIc). bp $128-130^{\circ} \mathrm{C}(1 \mathrm{~mm} \mathrm{Hg})$.IR spectrum, $\mathrm{v}, \mathrm{cm}^{-1}: 2170$ (CD). ${ }^{1} \mathrm{H}$ NMR spectrum, δ, ppm: 0.90$1.15 \mathrm{~m}\left(6 \mathrm{H}, \mathrm{CH}_{3}\right), 1.25-1.65 \mathrm{~m}\left(4 \mathrm{H}, \mathrm{CH}_{2}\right), 1.95-2.30 \mathrm{~m}$ $\left(4 \mathrm{H},=\mathrm{C}-\mathrm{CH}_{2}\right), 2.55-3.25\left(2 \mathrm{H},=\mathrm{CCH}_{2} \mathrm{C}=\right), 6.80 \mathrm{~s}(1 \mathrm{H}$, $\mathrm{DC}=\mathrm{CHPh}), 7.25-7.85(5 \mathrm{H}, \mathrm{Ph}) .{ }^{13} \mathrm{C}$ NMR spectrum, §, ppm: 13.85, $14.08\left(\mathrm{C}^{8}\right), 23.12,25.65\left(\mathrm{C}^{7}\right), 32.83\left(\mathrm{C}^{6}\right)$, 35.72, $38.85\left(\mathrm{C}^{3}\right)$, ${ }^{*}\left(\mathrm{C}^{5}\right), 126.61,127.32,129.49$, ${ }^{(}\left(\mathrm{C}^{2}\right)$, $130.95\left(\mathrm{C}^{I}\right), 136.86,138.56\left(\mathrm{C}^{4}\right) .[M]^{+} 230$. Found, \%: C 88.25; (H+D) 11.02. $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{D}_{2}$. Calculated, \%: C 88.63; H 9.63; D 1.74 .

The authors are grateful to A.Z. Sharipova (Laboratory of spectral methods of Institute of Petrochemistry and Catalysis, Russian Academy of Sciences) for helping to interprete the ${ }^{13} \mathrm{C}$ NMR spectra of magnesacyclopentadienes and alkylidenemagnesacyclopentenes.

The study was carried out under a financial support of the Russian Foundation for Basic Research (grants nos. 05-03-32367, NSh - 7470.2006.3).

REFERENCES

1. Dzhemilev, U.M., Sultanov, R.M., Gaimaldinov, R.G., and Muslukhov, R.R., Primenenie metallokompleksnogo kataliza v organicheskom sinteze (Application Metallocomplex Catalysis in Organic Chemistry), Ufa, 1989, p. 40.
2. Dzhemilev, U.M., D’yakonov, V.A., Khafizova, L.O., and Ibragimov, A.G., Tetrahedron, 2004, vol. 60, p. 1287.
3. Dzhemilev, U.M. and Ibragimov, A.G. Usp. Khim., 2005, vol. 74, p. 886.
4. Dzhemilev, U.M. and Ibragimov, A.G. Usp. Khim., 2000, vol. 69, p. 134.
5. Dzhemilev, U.M., D'yakonov, V.A., Khafizova, L.O., and Ibragimov, A.G., Zh. Org. Khim., 2005, vol. 41, p. 363.
6. Strohmeier, W. and Seifert, F., Chem. Ber., 1961, vol. 94, p. 2356.
7. Denise, B., Favarque, J.-F., and Ducom, J., Tetrahedron Lett., 1970, p. 335.
8. Lewis, D.P., Whitby, R.J., and Jones, R.V.H. , Tetrahedron, 1995, vol. 51, p. 4541.
9. Knight, K.S., Wang, D., Waymouth, R.M., and Ziller, J.,
J. Am. Chem. Soc., 1994, vol. 116, p. 1845.
10. Ioffe, S.T. and Necmeyanov, A.N., Metody elementoorganicheskoi khimii. Podgruppa magniya berilliya kal'tsiya strontsiya bariya (Methods of Organoelemental Chemistry. Magnium, Berrilium, Calcium, Strontium, Barium Sub-Group), Moscow: Izd. Akad.Nauk SSSR, 1963, 561 p.
11. Dzhemilev, U.M., Ibragimov, A.G., Ramazanov, I.R., and Khalilov, L.M., Izv. Akad. Nauk, Ser. Khim., 1997, p. 2269.
12. Dzhemilev, U.M., Ibragimov, A.G., Khafizova, L.O., Yakupova, L.R., and Khalilov, L.M., Zh. Org. Khim., 2005, vol. 41, p. 684.
